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Frequency-Dependent Analysis of a Shielded
Microstrip Step Discontinuity Using an
Efficient Mode-Matching Technique

NIKOLAOS K. UZUNOGLU, MEMBER, 1EEE, CHRISTOS N. CAPSALIS,
AND CONSTANTINOS P. CHRONOPOULOS

Abstract —The frequency-dependent characteristics of microstrip step
discontinuities are analyzed by employing a mode-matching technique. The
fields on both sides of a discontinuity are expanded in terms of the normal
hybrid modes of the shielded microstrip line. The properties of these
hybrid modes are determined by applying a previously developed analytical
approach using singular integral equation techniques. In addition to propa-
gating modes, higher order modes are also taken into account. The higher
order modes are evanescent-type waves. The propagation constants of the
evanescent waves in general are found to be complex numbers. A mode-
matching procedure is developed to determine the reflection and transmis-
sion coefficients of the discontinuity. The use of two types of products to
treat the boundary conditions for the continuity of the tangential electric
and magnetic fields results in a highly efficient and numerically stable
solution. Numerical results are computed for several step discontinuities
and the results are compared with previously published data.

I. INTRODUCTION

COMMONLY encountered discontinuity structure
in microstrip lines is the abrupt change of strip line
width. This type of discontinuity is widely employed in
low-pass filters, multisection quarter-wavelength trans-
formers, stepped coupled line directional couplers, and
many other microwave circuits. Therefore it is important
to develop analytical techniques to compute accurately the
characteristics of step discontinuities. These solutions can
be incorporated into computer-aided design software
packages of conventional and monolithic microwave in-
tegrated circuits. Furthermore, solutions developed for step
discontinuity can serve as a starting point for more general
treatments of discontinuity structures in planar microwave
and millimeter-wave networks.

Several approaches have been proposed to treat the step
discontinuities in microstrip lines. Presently there are
several comprehensive reviews on this matter, such as the
books by Hoffmann [1], Gupta et al. [2], [3], Edwards [4].,
and Mehran [5]. There is also a detailed revised description
and a presentation of a rigorous frequency-dependent
technique by Koster and Jansen [6].

A discrete element T-type two-port network consisting
of two series inductive elements and a single shunt capaci-
tive element has been proposed to model the step discon-
tinuity approximately [7], [8]. Another approximate tech-
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nique used by several authors is to treat the microstrip
lines on both sides of the discontinuity with an equivalent
magnetic waveguide model [9], [10]. Then the rather simple
normal modes of the equivalent microstrip line are em-
ployed in formulating a mode-matching procedure. A sys-
tem comprising an infinite set of equations involving the
unknown expansion coefficients is obtained. This system
could be solved numerically, by analytic matrix inversion,
or by applying residue calculus techniques. The inherent
limitations of these approximations and the necessity of
seeking rigorous solutions have been discussed recently by
Koster and Jansen [6]. The rigorous frequency-dependent
method developed by Jansen [11], [12] to analyze step
discontinuities, microstrip, and slot end effects is based on
a spectral-domain approach using hybrid-mode analysis.
The boundary value problem is reduced to the planar
structure surface by incorporating initially into the field
solutions the boundary conditions on the shielding walls.
Then a Galerkin approach in conjunction with a spectral-
domain Green's function interpolation technique with
especially suited expansion functions is employed to solve
the problem [11].

In this paper the very basic concepts of the moede-match-
ing technique are employed to formulate the boundary
condition problem associated with the microstrip step dis-
continuity problem. The fields on both sides of the discon-
tinuity are expanded in terms of hybrid modes. The char-
acteristics of these modes are determined by utilizing the
analysis developed by Mittra and Itoh [13] in determining
the dispersion characteristics of microstrip lines. The highly
analytical approach used in computing the mode proper-
ties allows the development of an efficient mode-matching
procedure. Furthermore, a fast convergence with number
of modes is obtained by using products involving both
microstrip line orthogonal mode functions. This feature is
the key point of the proposed technique and is in agree-
ment with the conclusions of Chu, Itoh, and Shih [14] in
solving the step discontinuity problem using a magnetic
wall equivalent waveguide microstrip model. The method
presented in this paper seems to have some resemblance to
techniques developed by Schmidt [15] and Chang [16],
although the modal characteristics are determined by an
entirely different method and the mode-matching tech-
nique used is completely different.
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The necessity of computing exactly the spectrum of
higher order modes of microstrip lines leads us to the
determination of evanescent waves with complex propa-
gation constants having properties similar to those ob-
served in finlines, as recently reported by Omar and
Schiinemann [19]. To the authors’ knowledge, this is the
first report of complex propagation constant waves in
shielded microstrip lines.

In the following analysis the time dependence of field
quantities is assumed to-be exp(+ jwt) and is suppressed
throughout the analysis. The free-space propagation con-
stant is shown with k, = @ /c where ¢ =3x10® m/s is the
velocity of electromagnetic waves in vacuum.

II. FORMULATION OF THE BOUNDARY VALUE PROBLEM

A. Computation of Mode Characteristics of Microstrip

The geometry pertaining to the microstrip discontinuity
is given in Fig. 1, where the step discontinuity is located at
the z=0 plane. The shielding box height and width are
denoted by 4 and (2L), respectively. The substrate dielec-
tric constant and thickness are denoted by €, and d,
respectively. '

It is. well known that microstrip line supports a domi-
nant mode whose characteristics at sufficiently low fre-
quencies can be determined by employing quasi-static
TEM mode analysis. However, because of the partial di-
~ electric filling, only hybrid modes can be guided. In char-
acterizing microstrip lines the primary quantity to be
known is the dominant mode propagation constant. Be-
cause of this, the literature on microstrip lines mostly
concerns the computation of propagation constants with
either quasi-static or frequency-dependent characteristics.
There have been only few reports on the properties of
higher order modes [17], [18]. The basic approach em-
ployed in the present analysis is to use the analytical
technique developed by Mittra and Itoh [13] to determine
the properties of higher order modes. In the following, the
same notation as in [13] is adopted.

The mode characteristics are determined by computing
the nontrivial solutions of the system [13],
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Where_ k =@2n-17/Q2L), §,, 1s the Kronecker symbol,
and Af,ff, A™ are the normalized mode expansion coeffi-

cients [13, egs. (12) and (13)]. The definitions of the a,,,

B, Cps Ams My, N,,, X,,, and Y, terms are given in (13,
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Fig. 1. Microstrip step discontinuity geometry:

egs. (22), (23), (24), (25), (48), (49), (52), and (53) respec-
tively]. Furthermore, in order to compute the D,,, P,
and K, terms up to an arbitrary order of solution, new
algorithms have been developed while in [13] only first-
order results are presented. In the Appendix details of the
procedures used in computing the values of D,,,,, P,,,, and
K, are presented. ;

The mode propagation constants 8 (which in general
can take complex values) and their associated mode expan-
sion coefficients 4, (e) and AYY are computed numeri-
cally by truncating the infinite system of (1) and (2) into a
finite order system. To this end, it has been demonstrated
by Mittra and Itoh [13] that the system in (1), (2) possesses
highly convergent properties in terms of the truncation
order: This is especially valid when only the value of the
propagation constant is desired. It has been shown that
taking only the first-order terms (i.c., terms with m'=1 and
n=1) and solving a 2X2 system, fairly good accuracy is
obtained [13]. Assuming the numerical values of the 8
propagation constants that give a zero determinant for the
system comprising (1) and (2) are known, the correspond-
ing A and A coefficients can be determined by arbi-
trarily setting A{®) =1. Then the mode field distribution
can be determined by first computing the potential func-
tions,
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B=B/ky, po=47x10"" (H/m).
Then the electric and the magnetic field for a specific
mode with 8=, can be computed by using the relations

E,(r)= (]“ (y; L Y2 +e (x, y))e “Bnz(5)
Hm(r)=( —-(—[;)———[Lx#‘“Whm(x y))e Bz (6)

where

k(y) =kom)—

€

)=y

and the transversal field components are
Wity

forO<y<d
ford<y<h

e, (x,y)=v ¥ — ZXV‘I’(h) (7)
wely), © )
h,(x,y)= g Xv¥OrvY (8)
with
d 0
V=% Ix yay

In (5)—(8) the subscript m indicates the mode number.

The microstrip line being an inhomogeneously dielectric
loaded waveguide, the mode power orthogonality is satis-
fied [19]:

/;{f(em(xvY)Xh;’(x’Y))‘fdxdy s .C

mm’~m (9)
where A is the cross-sectional area of the microstrip and
the mode power coefficients C,, are computed by substitut-
ing (3), (4), (7), and (8) into (9) and performing the
integrations for the x and y variables. The expression for
the C,, coefficient is given in the Appendix.

The closed wall nature of the shielded microstrip line
ensures the existence of only discrete eigenwaves, exclud-
ing the possibility of having a continuous spectrum of
modes observed in open microstrip line. Then, the roots S,
of the determinant of the system comprising (1) and (2)
should be determined carefully and the modes should be
treated as an ordered set. In practice only a single mode is
allowed to propagate on microstrip line. There are an
infinite number of evanescent waves. Numerical computa-
tions showed that usually the evanescent waves have purely
imaginary propagation constants and therefore they are
strongly attenuated along the propagation axis. However,
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TABLEI
NUMERICAL RESULTS FOR THE MODE PROPAGATION CONSTANTS
AT 10 GHz anD 20 GHz

Frequency = 10 GHz
w = 0,953 mm w = 4,572 mn

m B, (mm ) B (ma ")

1 0.2884+30.0 0.3021+370.0
2 0.0-370.2483 0.0-30.2409
3 0.0-30.5547 0.0-30.5508
4 0.0-30.,5886 0.0-30.6027
5 0,0-30.,9652 0.0 30.9640
6 0.0-~31.0209 0.0-30.9773
7 0.0044%9-31.0849 0.0-31.0731
8 ~0.00449-71.0849 0.0-31.1023
9 0.0-31.1075 0.0~-31.1236

Frequency = 20 GHz
w = 0.953 mm w = 4,572 mm

n A B, (™)

1 0.5825+30.0 0.6132+30.0
2 0.2778+30.0 0.2751+30.0
3 0.0-30.4127 0.0-370.4034
4 0.0-30.4558 0,0-30.4802
5 0.0-30.8880 0,0-30.8626
6 0.0-31.0450 0.0-31.0631

€, =232, L =476 mm, and A=635 mm (see Fig. 1). The two

microstrip widths are 0.953 mm and 4 572 mm,

in some cases, it is possible to have complex 8 roots of the
determinant of the system (1) and (2). These complex roots
are traced by applying the procedure described in [19]. The
properties of the complex microstrip modes will be dis-
cussed elsewhere. In Table I mode propagation constants
of two sample cases are given at 10 GHz and 20 GHz.

In order to determine the numerical values of the S,
propagation constants in the first place, the simplified
2X2 version of (1) and (2) is solved. Then, the values of g,
and the expansion coefficients 4(¢) and A”’) (A9 =1) are
determined accurately by using (2M number of equations
in the system (1), (2). To this end, a Regula—Falsi al-
gorithm has been adopted to compute the roots of the
determinant equation. In most cases only a single propa-
gating (B =B, =real) wave is encountered, although for
sufficiently large €, and k,d values a second propagating
mode could exist.

The convergence patterns of the modal field expansion
coefficients A(” for a sample microstrip line are presented
in Table II, where a very good numerical stability and
convergence are observed. Notice that the low-order coeffi-
cients (A{9, A; see the Appendix for the definition of
A{?) in the case of evanescent modes are very insensitive
to the order of solution M.

B. Mode-Matching Technique

In order to determine the frequency-dependent char-
acteristics of the step discontinuity, an incident propagat-
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TABLE II
MOoDAL FIELD EXPANSION COEFFICIENT CONVERGENCE

# 1 2 3 4 5 6 7
B(mm~1y  0.3000+j0.0 0.3017+30.0 0.3020+j0.0 0.3021+30.0 0.3021+j0.0 0.3021+30.0 0.3021+30.0
5.0223+§0.0 4.9958+30.0 4,9910+j0.0 4.9905+30.,0 4,9902+30.0 4.9902+30.0 4.9901+30.0
-2.7243+30.0  -2.64574j0.0  -2.6624+30.0  -2.6636+j0.0  ~-2.6647+j0.0  -2.6649+30.0
(e) 0.4844+30.0 0.5160+30.0 0.5202+30.0 0.5214+30.0 0.5218+30.0
An 0.2677+30.0 0.2611+30.0 0.2610+30.0 0.2608+30.0
-0.1210+j0.0  -0.1220+¢j0.0  -0.1221+j0.0
-0.0521+30.0  -0.0517+30.0
0.0310+30.0
Blmm=1)  0.0-j0.2470 0.0-30.2469 0.0-30.2469 0.0-30.2469 0.0-30.2469 0.0-30.2469 0.0-30.2469
0.0-36.8013 0.0-36.8038 0.0-36.8041 0.0-36.8041 0.0-36.8041 0.0-36.8041 0.0-j6.8041
-3.0847+j0.0  -3.0285+j0.0  -3.0325+10.0  -3.0332+j0.0  -3.0334+j0.0  -3.0334+j0.0
(o) 0.6759+30.0 0.6828+30.0 0.6836+30.0 0.6838+30.0 0.6838+30.0
n 0.1865+50.0 0.1854+30.0 0.1854+j0.0 0.1854+j0.0
-0.1171#§0.0  =-0.1172+j0.0  -0.1172+30.0
-0.0376+j0.0  -0.0375+j0.0
0.0279+30.0
B(mm~1)  0.0-30.6020 0.0-30.6026 0.0-0.6027 0.0-30.6027 0.0-30.6027 0.0-30.6027 0.0-30.6027
0.0-j2.7057 0.0-32.7030 0.0-j2.7028 0.0-32.7028 0.0-j2.7028 0.0-j2.7078 0.0-j2.7028
-3.9191+j0.0  -3.8977+j0.0  -3.9019+30.0  -3.9022+j0.0  -3.9021+j0.0  -3.9020+j0.0
agle) 0.7390+30.0 0.7444+30.0 0.7449+30.0 0.7448+0.0 0.7447+50.0
0.1941+50.0 0.1935+§0.0 0.1935+30.0 0.1936+0.0
-0.1218+j0.0  -0.1218+j0.0  -0.1218+0.0
-0.0381+30.0  -0.0382+30.0
0.0286+30.0

f=10 GHz, ¢, = 2.32, L =4.76 mm, & = 6.35 mm (see Fig. 1), and w = 4.572 mm.

ing wave (B =8,) from z = — oo toward z =0 (see Fig. 1)
is taken. Furthermore, assuming the mode properties of
the microstrips on both sides of the discontinuity are
known, inside the z < 0 half-space the transversal electric
and magnetic field components can be expressed as a
superposition of the incident and the sum of all the
reflected waves:

+c0
E(x,y.2)=e(x,y)e P+ 3 A,e,(x,y)e™ (10)

n=1

+ 00
H/(x,p,z) =hy(x,p)eP?= ¥ A,h,(x,y)e"
n=1

(z<0) (11)

where 4, (n=1,2,---) are unknown coefficients to be
determined. The corresponding transversal field compo-
nents inside the z > 0 semi-infinite space can be written as
follows:

(12)
(2>0)

(13)

+00
E/(x,p,2) = ¥ B,e,(x,y)e
m=1

+ o0
H/(x,y,z)= X B,h,(x,y)e
m=1

where the prime symbol is used to distinguish the two
different microstrip line modal field distributions and

' propagation constants. Again B, (m=1,2,---) are un-
known coefficients to be determined.
Applying the boundary conditions on the z=0 plane
for the continuity of the transversal field components,

()t S Ade(ny)= ¥ Ben(xy)  (14)
n+=°<1) m+=°1° (z=0)
m(xu)= X Ad(n0)= T B(xy)  09)

are obtained. Then, in order to determine the unknown 4,
and B, expansion coefficients, (12) and (13) should be
transformed by some means into an infinite system of
equations and the dependence on the x and y coordinates
should be removed. To this end, it is possible to pursue
several strategies in computing the A, and B, coefficients.
A quite similar problem of choosing the best mode-match-
ing approach when the magnetic wall microstrip model is
employed has been addressed recently by Chu, Itoh, and
Shih [14]. Furthermore, the trial of several approaches
showed that there is also an optimal strategy in terms of
convergence behavior in the present hybrid mode analysis.
To this end it is found that the optimal way of solving (14)
and (15) is to take the vector products of them with
e, (x,y)and h}(x,y), respectively. Following the ortho-

gonality properties of the e, h, and e}, h), eigenwaves
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Fig. 2. Convergence of |S;| reflection coefficient with M (truncation order of (1) and (2)) and N (number of modes)
taken into account on both sides of discontinuity for w, /w, =2, w, /d =3, and ¢, = 2.32.

given in (9), it is found that

+ o0
Clanl + AnCn = Z Bmcmn (16)
m=1

wCon (17)

+ o0
. E A4,C, = B, G
n=1
where
Con= [ [len(e. )X b3 (. ) dxdy  (18)
A

are coupling integrals and C,,C; have already been de-
fined in (9).

Eliminating the B,, coefficient in (16) and (17), a new set
of infinite system of equations is obtained:

A AR e
AnCn+ Z Ak( Z _—_ﬁ) = ( Z G _—_1-—C13n1 s
L m=1

k=1 1=1 Cr:’
n=1,2,3,--- (19)

This system constitutes the basis of the analytical ap-
proach of this paper. In order to detérmine the unknown
expansion coefficients A4, A,,- - -, the infinite summations
appearing in (19) should be truncated into finite order by
taking N terms (modes). Then, convergence of the com-
puted results is examined to verify the accuracy. This
subject will be treated in the next section.

The coupling integrals C,,, are computed by substituting
the field expressions given in (7) and (8) into (18) and then
performing the integrations for the x and y variables. The
result of this analysis is given in the Appendix. After
determining the A, reflected wave coefficients, the trans-
mitted wave expansion coefficients B, are computed easily
by using (17), where of course, the same Nth-order trunca-
tion of the infinite sums is used. In practice the interested
quantities are the dominant mode reflection S, and trans-
mission S,; coefficients. Then S;; = 4; and according to
the definition of S parameters

(20)

I1I.

Numerical computations have been performed by apply-
ing the theory developed in Section II. For each pair of
microstrip lines the spectrum of propagation and evanes-
cent waves is determined up to sufficient order by taking
2 M equations in the system (1), (2). A perfect agreement
with the B values given in [13] is observed. Then, (19) is
solved numerically by keeping N terms in the infinite
summation. Both M and N truncations affect the accu-
racy of the obtained results for the $;; and S,, parameters.
In each case, extensive convergence tests have been per-
formed to verify the accuracy of the obtained results. In
Figs. 2 and 3 sample convergence patterns are presented.
In general, the phase quantities /S;; and & are much

more sensitive than the corresponding amplitudes |S},| and
[S5:- The truncation order M of the system of (1), (2)
seems to have the primary role in the convergence. The
numerical results presented in this paper have been com-
puted by using M = 8 and N = § truncations.

The “relative convergence” aspect [20] by taking a non-
equal number of modes in (19) in the two microstrip lines
has been investigated. It has been shown that some im-
provement in the convergence speed can be achieved by
taking the ratio of mode numbers equal to the ratio of
microstrip widths. However, because of the smooth con-
vergence of the results presented in this paper no use is
made of this property.

Several independent checks have been performed nu-
merically, such as the validity of the power conservation,
reciprocity (S,; = S;,), and the boundary conditions on the
y=4d plahe (see Fig. 1) by the mode field distributions.
Furthermore, the orthogonality conditions given in (9)
have been verified by direct numerical computation.

Step discontinuities on low €, = 2.32 (polyethylene) and
high €, =10 (alumina) dielectric constant substrates have
been considered. In all the computed results the shielding
box dimensions are taken to be

NUMERICAL RESULTS

2L =053 mm h=6.35 mm.
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Fig. 4. Variation of |S);|and |S,,| parameters with d /A, (A, being the
free-space wavelength) for several discontinuity dimensions and ¢, =
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981
4511 —
170
160 —
l I T
002 003 004 —
No
W1/d
_3
—--— 3 Ref[g]
I ] T d
002 003 004 —
)\O

Fig. 5. Variation of /Sy and /Sy phase parameters with d /X, for
several discontinuity dimensions and €, = 2.32.

£-=10 ﬁ@;
N i
3 21
0.6
3
02— 1S14]
2
i [ [
902 o003 ooa 4
Ao

Fig. 6. Variation of |S;;| and |S,;| parameters with d /A, for several
discontinuity dimensions, ¢, =10, and w; /d =1.5.
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Fig. 7. Variation of /§), and /Sn phase parameters with d /A, for several discontinmty dimensions, €,=10, and
w /d =15,

The scattering parameters S;; and S,, are presented in
terms of their amplitudes and phases versus the normal-
ized substrate thickness d /A, where A is the free-space
wavelength (A, =27/k).

In Figs. 4 and 5 results are given for the e,=2.32
substrate, several microstrip width w, /w, ratios, where w,
and w, are defined in Fig. 1, and two w,/d ratios. The
results obtained are compared with those given by Koster
and Jansen [6], which are also drawn on the same figures
for w,/d =3 and w,/w,=2 and 3. Good agreement is
observed for the |S,,|, |Sy,| amplitude quantities, while the
comparison of /S;; and /S, phase quantities is also
reasonably good.

Discontinuities in microstrip lines with ¢, =10 alumina
substrate have been computed and are presented in Figs. 6
and 7. A similar behavior is observed with the ¢, = 2.32
substrate case.

IV. CONCLUSIONS

A frequency-dependent analysis has been presented for
the microstrip discontinuity problem. The proposed
method is shown to be efficient in terms of the required
numerical labor and is easy to program. The evanescent
mode spectrum of microstrip lines has been investigated
and the existence of modes with complex propagation
constants has been verified. Numerical results have been
presented for several discontinuity structures and a com-
parison with previously published data has been per-
formed. In principle the same method could be used to
treat other types of discontinuity problems in microstrip
lines and the junctions between different types of wave-
guides and microstrip lines.

APPENDIX

w and K, Terms

Following a standard trlgonometrlc analysis, the P,
terms defined in [13, eq. (68)] after algebraic manipula-
tions, are found to be
[4/2]

A. Computation of P

mq’

m—1

L B X [ Jedels (2, )
m—1 e q=2v
» 1=§—1Bm1 kgv (2k—1)
mq = X a2k~ gl zk+122k_2(2kk_—vl )
g=2v-1
Zle,Uf](zk)“%ka{ 2k 212"(2kk>’
q=0

where «; and a, are defined in [13, eq. (61)] and the 4,,,

and B, , are given by the recursive relations
n—1
AT _ —
quAnq(U)—@n 1)—— @0 +1)' H(n N(n+1-1),
v#0
n—1
3 4,,=2n-1
g=0
n-—1 q
EUB""(”) (20)' ﬂ(n—z) (n+1-1), 0#0
n—1
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Following an analogous procedure, the D,,, and K, and I1,12, I3, I4 are the following integrals:

terms, defined in [13, egs. (73) and (72) respectively], are d . }
given as follows: = fo sinh (afYy)- (Smh (efP ))* dy

m~1 d‘
ST AT Ay T (et )12 [ (afy)-sn(o)
,,_1 q+1/2] ]3=fhsinh(a§(2) h— y ) (Sinh(ag)(h—y)))*dy
—asz (2k 1) ‘

I4=fdhcosh( a@(h-y))- (cosh(af)(h—y)))*dy.

1
a%k~1ai;—2k+1_( kk)

2 2k
where C. Computation of the C,,, Terms (m(n})=1,2,3,-+)
1 k The coefficients C,,, defined in (18) are given as follows:
— | k—qg-1 8be @
X, = 2| Cpn=L- (— ARk, + B—“A“')a(l) )
k=1 m
when k —g+1=evenand ¢g—1<k .
0 elsewhere P L Ok 4 4D
) —:8— kn e T Afy Ry 11
k n
_1_ k—qg+1 () (1) (M
Yy — 2k — — A al +b——4 Dk
kq m
when k—g+1=evenand g+1<k we e -
0 elsewhere '(_ —B—'Aii’aﬁﬁﬁ + A;!::)kk) 12
and "
n—1 fq/2] 1 (erf ﬁ (B (2)
_a2 Z Anq Z D(%U(Xf 2L2 U(ZUU)(qu). +(Bkmkk+ leBkmakm
we R *
B. Computation of the C, Terms (n=1,2, -) -(—/—g—OB,((kak + B,ﬂﬁ)aﬁf) -13
The coefficients C, defined in (9) are given as follows: g
-] e wi
C-1.% (_ A§j>12k+w—“A§(h>a§}’) +| B{©a? + B(h>kk)
P B, "

* we *
WEE ,\ 0 ne 7
.(_ ,30 ’A&j’kk+A§f')a§})) 71 ( 3 B/(m)aﬁ?*”B;(fi)kk) 14

where

. al), =Vki+BL—e .k al) = ki + B} — €k}
€, A 3

d Age)azl>+A;h>kk) 12 of, = k2 + BZ— k2 ol =k +p2- k3

—n

Wit R
- Aﬁf’ag) + FAgch)kk)

n

we x and I1, 12, I3, I4 are the following integrals:
B(e)k + __B(h) (2) _B(e)k + BMa@ 1 . 13 d . 1 . 1 *

B, T B Il=/ sinh(af),y)- (sinh (aly)) dv
0

*

B‘e)a(2’+—B(’”k ) (E‘EBM @ 4 gk ) I2=fdcosh al)y)- (cosh(a}},}y))*dy
where I3= / sinh (a@,(h— y))-(sinh(af,l,(h—y)))*dy

o) = k2 + B2 — €,k3
of) =\Ei + I - K

I4=Lcosh(a§f,3,(h—y))-(cos (a@2(h=»))) ay
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