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Frequency-Dependent Analysis of a Shielded
Microstrip Step Discontinuity Using an

Efficient Mode-Matching Technique
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Abstract —The frequency-dependent characteristics of microstrip step

discontinuities are analyzed by employing a mode-matchkrg technique. The

fields on both sides of a discontinuity are expanded in terms of the normaI

hybrid modes of the shielded microstrip line. The properties of these

hybrid modes are determined by applying a previously developed analytical

approach using singular integral equation techniques. In addition to propa-

gating modes, higher order modes are also taken into account. The higher

order modes are evanescent-we waves. The propagation constants of the

evanescent waves in general are found to be complex numbers. A mode-

matching procedure is developed to determine the reflection and transmis-

sion coefficients of the discontinuity. The use of two types of products to

treat the boundary coi]ditions for the continuity of the tangential electric

and magnetic fields results in a highly efficient and numerically stable

solution. Numerical results are computed for several step discontinuities

and the results are compared with previously published data.

I. INTRODUCTION

A COMMONLY encountered discontinuity structure

in microstrip lines is the abrupt change of strip line

width. This type of discontinuity is widely employed in

low-pass filters, multisection quarter-wavelength trans-

formers, stepped coupled line directional couplers, and

many other microwave circuits. Therefore it is important

to develop analytical techniques to compute accurately the

characteristics of step discontinuities. These solutions can

be incorporated into computer-aided design software

packages of conventional and monolithic microwave in-

tegrated circuits. Furthermore, solutions developed for step

discontinuity can serve as a starting point for more general

treatments of discontinuity structures in planar microwave

and millimeter-wave networks.

Several approaches have been proposed to treat the step

discontinuities in microstrip lines. Presently there are

several comprehensive reviews on this matter, such as the

books by Hoffmann [1], Gupta et al. [2], [3], Edwards [4],

and Mehran [5]. There is also a detailed revised description
and a presentation of a rigorous frequency-dependent

technique by Koster and Jansen [6].

A discrete element T-type two-port network consisting

of two series inductive elements and a single shunt capaci-

tive element has been proposed to model the step discon-

tinue y approximately [7], [8]. Another approximate tech-
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nique used by several authors is to treat the microstrip

lines on both sides of the discontinuity with an equivalent

magnetic waveguide model [9], [10]. Then the rather simple

normal modes of the equivalent microstrip line are em-

ployed in formulating a mode-matching procedure. A sys-

tem comprising an infinite set of equations involving the

unknown expansion coefficients is obtained. This system

could be solved numerically, by analytic matrix inversion,

or by applying residue calculus techniques. The inherent

limitations of these approximations and the necessity of

seeking rigorous solutions have been discussed recently by

Koster and Jansen [6]. The rigorous frequency-dependent

method developed by Jansen [11], [12] to analyze step

discontinuities, microstrip, and slot end effects is based on

a spectral-domain approach using hybrid-mode analysis.

The boundary value problem is reduced to the planar

structure surface by incorporating initially into the field

solutions the boundary conditions on the shielding walls.

Then a Galerkin approach in conjunction with a spectral-

domain Green’s function interpolation technique with

especially suited expansion functions is employed to solve

the problem [11].

In this paper the very basic concepts of the mode-match-

ing technique are employed to formulate the boundary

condition problem associated with the microstrip step dis-

continuity problem. The fields on both sides of the discon-

tinuity are expanded in terms of hybrid modes. The char-

acteristics of these modes are determined by utilizing the

analysis developed by Mittra and Itoh [13] in determining

the dispersion characteristics of microstrip lines. The highly

analytical approach used in computing the mode proper-

ties allows the development of an efficient mode-matching

procedure. Furthermore, a fast convergence with number

of modes is obtained by using products involving both
microstrip line orthogonal mode functions. This feature is

the key point of the proposed technique and is in agree-

ment with the conclusions of Chu, Itoh, and Shih [14] in

solving the step discontinuity problem using a magnetic

wall equivalent waveguide microstrip model. The method

presented in this paper seems to have some resemblance to

techniques developed by Schmidt [15] and Chang [16],

although the modal characteristics are determined by an

entirely different method and the mode-matching tech-

nique used is completely different.
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The necessity of computing exactly the spectrum of

higher order modes of microstrip lines leads us to the

determination of evanescent waves with complex propa-

gation constants having properties similar to those ob-

served in finlines, as recently reported by Omar and

Schunemann [19]. To the authors’ knowledge, this is the

first report of complex propagation constant waves in

shielded microstrip lines.

In the following analysis the time dependence of field

quantities is assumed to be exp ( + jot) and is suppressed

throughout the analysis. The free-space propagation con-

stant is shown with kO = o/c where c z 3 X108 m/s is the

velocity of electromagnetic waves in vacuum.

II. FORMULATION OF THE BOUNDARY VALUE PROBLEM

A. Computation of Mode Characteristics of Microstrip

The geometry pertaining to the microstrip discontinuity

is given in Fig. 1, where the step discontinuity is located at

the z = O plane. The shielding box height and width are

denoted by h and (2.L), respectivdy. The. substrate dielec-

tric constant and thickness are denoted by ~, and d,

respectively.
It is well known that microstrip line supports a domin-

ant mode whose characteristics at sufficiently low fre-

quencies can be determined by employing quasi-static

TEM mode analysis. However, because of the partial di-

electric filling, only hybrid modes can be guided. In char-

acterizing microstrip lines the primary quantity to be

known is the dominant mode propagation constant. Be-

cause of this, the literature on microstrip lines mostly

concerns the computation of propagation constants with

either quasi-static or frequency-dependent characteristics.

There have been only few reports on the properties of

higher order modes [17], [18]. The basic approach em-

ployed in the present analysis is to use the analytical

technique developed by Mittra and Itoh [13] to determine

the properties of higher order modes. In the following, the

same notation as in [13] is adopted.

The mode characteristics are determined by computing

the nontrivial solutions of the system [13],

co

+ Z (‘qaqn– ‘nDqn –Y~Kq)~$h)=O, q=l,2 ””” (2)
~=]

where ~ - (2u – 1) Tr/(2 L), ~p~ is the Kronecker symbol,
and ~~~, ~(fi) are the normalized mode expansion coeffi-

cients [13, ~qs. (12) and (13)]. The definitions of the am,

b~, cm, d~, Mm, Nn, .XM, and Y~ terms are given in [13,

I

Fig. 1. Microstrip step discontinuity geometW:

eqs. (22), (23), (24), (25), (48), (49), (52), and (53) respec-
tively]. Furthermore, in order to compute the D.~, P~q,

and K. terms up to an arbitrary order of solution, new

algorithms have been developed while in [13] only first-

order results are presented. In the Appendix details of the

procedures used in computing the values of D.m, P~q, and

K. are presented,

The mode propagation constants /3 (which in general

can take complex values) and their associated mode expan-— —
sion coefficients A ~( e) and A$’) are computed numeri-

cally by truncating the infinite system of (1) and (2) into a

finite order system. To this end, it has been demonstrated

by Mittra and Itoh [13] that the sys tern in (l), (2) possesses

highly convergent properties in terms of the truncation

order, This is especially valid when only the value of the

propagation constant is desired. It has been shown that

taking only the first-order terms (i.e., terms with m = 1 and
n =1) and solving a 2 x 2 system, fairly good accuracy is

obtained [13]. Assuming the numerical values of the B

propagation constants that give a zero determinant for the

system comprising (1) and (2) are known, the correspond-

ing ~~) and ~jh) coefficients can be determined by arbi-

trarily setting ~[e) =1. Then the lmode field distribution

can be determined by first computing the potential func-

tions,

I
sinh ( a~l)y )

~f)
w~

+(’) = ~ cos(Lnx)
for O<y<d

~=1 sinh(a~)(h– y))
~~e) sinh(a~z)(h – d))

( ford<y<h

(3)

i

~(h) flttn lcosh(a~)y)
—.

n WI C$) sinh ( @d )

\ ford<y<h

(4)
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where

~=D/k~, P0=4~ x10-7 (H/m).

Then the electric and the magnetic field for a specific

mode with /3 = /?~ can be computed by using the relations

where

k(y) =k,~

( for O<y<d
c(y)= ;

ford<y<h

and the transversal field components are

UP o
em(x, y) =V’,’k(e)– —

&
;xvt~~f’~ (7)

ll,n(.x, y)=
u(y)
—2XV1’P(’)+VIW)

1%
(8)

with

In (5)–(8) the subscript m indicates the mode number.

The microstrip line being an inhomogeneously dielectric

loaded waveguide, the mode power orthogonality is satis-

fied [19]:

where A is the cross-sectional area of the microstrip and

the mode power coefficients Cm are computed by substitut-

ing (3), (4), (7), and (8) into (9) and performing the

integrations for the x and y variables. The expression for

the Cm coefficient is given in the Appendix.
The closed wall nature of the shielded microstrip line

ensures the existence of only discrete eigenwaves, exclud-

ing the possibility of having a continuous spectrum of

modes observed in open microstrip line. Then, the roots ~m,

of the determinant of the system comprising (1) and (2)

should be determined carefully and the modes should be

treated as an ordered set. In practice only a single mode is

allowed to propagate on microstrip line. There are an

infinite number of evanescent waves. Numerical computa-

tions showed that usually the evanescent waves have purely

imaginary propagation constants and therefore they are

strongly attenuated along the propagation axis. However,

TABLE 1
NUMERICAL RESULTS FOR THE MODE PROPAGATION CONSTANTS

AT 10 GEIz AND 20 GEIz

Frequency = 10 GHz

w = 0.953 nun w=4.572mm

m ~ (m-’) Bm(mm-’)

1 0 .7884+,0.0 0.3021 +]0.0

2 0.0-] 0.2483 0 .0-,0.24.9

3 0.0-j O.5547 0.0-] 0.5508

4 0.0-30.5886 0.0-,0.6027

5 0,0-,0.9652 0.0 ]0 .9640

6 0.0-]1 .0209 0.0-] 0.9773

7 0.00449-]1 .0849 0.0-,1.0731

8 -0.00449 -]1 .0849 0.0-31.$023

9 0.0-,1.1075 0.0-,1.1236

Frequency = 20 GHz

w= O.953mm w.=4.57211,JII

m Pm(m-’) Bm(mm-’)

1 0 .5825+,0.0 0.6i32+]0.0

2 0 .2778+,0.0 0 .2751+,0.0

3 O.O–]O .4127 0.0-] 0.4034

4 0.0-] 0.4558 0.0-20.4802

5 0.0-] 0.8880 0.0–30.8626

6 0.0-]1 .0450 0.0-71.0631

c = 2.32, L = 4.76 mm, and h = 6,35 mm (see Fig. 1). The two

microstrip widths are 0.953 mm and 4572 mm.

in some cases, it is possible to have complex ~ roots of the

determinant of the system (1) and (2). These complex roots

are traced by applying the procedure described in [19]. The

properties of the complex microstrip modes will be dis-

cussed elsewhere. In Table I mode propagation constants

of two sample cases are given at 10 GHz and 20 GHz.

In order to determine the numerical values of the ~W,

propagation constants in the first place, the simplified

2 X 2 version of (1) and (2) is solved. Theq the values of /3~

and the expansion coefficients ~~~ and A:’, ( ~~e) =1) are

determined accurately by using (2 M ) number of equations

in the system (l), (2). To this end, a Regula–Falsi al-

gorithm has been adopted to compute the roots of the

determinant equation. In most cases only a single propa-

gating (~ = D1 = real) wave is encountered, although for

sufficiently large c, and kod values a second propagating
mode could exist.

The convergence patterns of the modal field expansion

coefficients A:) for a sample microstrip line are presented

in Table H, where a very good numerical stability and

convergence are observed. Notice that the low-order coeffi-

cients ( A[e), Ay); see the Appendix for the definition of

A(e)) in the case of evanescent modes are very insensitive

to” the order of solution M.

B. Mode-Matching Technique

In order to determine the frequency-dependent char-

acteristics of the step discontinuity, an incident propagat-
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TABLE II
MODAL FIELD EXPANSIONCOEFFICIENTCONVERGENCE

w 1 2 3 4 5 6 7

(3(mm-1) 0.3000+j0. O 0.3017 +jO. O 0.3020 +jO. O 0.3021 +jO. O 0.3021 +jO. O 0.30 Zl+jO. O 0.30’21+j0. O

5.0223 +jO. O 4.9958+J0. O 4.9910 +jO. O 4.9905 +jO. O 4.9902 +jO. O 4.9902 +jO. O 4.9901 +jO. O

-2.7243 +JO. O -2.6457 +jO. O -2.6624 +jO. O -2,6636 +jO. O -2.6647 +j0,0 -2.6649 +jO. O

An(e)
O. 4844+j0. O 0.5160 +jO. O 0.5202 +jO. O 0.5214 +jO. O 0.5218 +jO. O

0.2677 +jO. O 0.2611 +jO. O 0.2610 +jO. O 0.2608 +JO. O

-0.1210 +jO. O -0.1220+j0. O -0.1221 +jO. O

-0.0521 +jO. O -0.0517 +J0,0

0.0310+j0. O

B(mm-l) 0. O-j O.2470 0. O-j O.2469 0. O-jO.2469 0. O-j O.2469 0. O-J O.2469 0. O-J O.24f19 O. O-j O. 2469

0. O-j6.8013 0. O-j6.8038 0. O-j6.8041 0. O-j6.8041 0. O-j6.8041 0. O-j6.8041 0. O-j6.8041

-3.0447 +jO. O -3.0285 +jO. O -3.0325 +JJ. O -3.0332 +jO. O -3.0334 +jO. O -3.0334 +jO. O

An(e)
0.6759 +jO. O 0.6828+j0. O 0.6836 +jO. O 0.6838 +jO. O 0.6838 +jO. O

0.1865 +jO. O O. 1854+j0. O 0.1854 +jO. O O. 1854+j0. O

-0.1171+j0. O -0.1172+j0. O -0.1172+j0. O

-0.0376 +j0,0 -0.0375 +jO. O

0.0279 +jO. O

B(mm-l) 0. O-jO.6020 0. O-j O.6026 0. O-j O.6027 0. O-j O.6027 0. O-j O.6027 0. O-j O.6027 0. O-J O.6027

0. O-j2.7057 0. O-j2.7030 0. O-j2.7028 0. O-j2.7028 0. O-j2.7028 0. O-j2.702’8 0. O-j2.7028

-3.9191 +jO. O -3.8977 +jO. O
An(e)

-3.9019 +jO. O -3.9022 +jO. O -3.9021 +jO. O -3.9020 +jO. O

0.7390 +jO. O O. 7444+j0. O 0.7449+j0. O O. 7448+j0. O 0.7447 +jO. O

0.1941 +jO. O 0.1935 +jO. O 0.1935 +jO. O O. 1936+j0. O

-0.1218 +jO. O -0.1218 +j0,0 -0.1218 +JO. O

-0.0381 +j0,0 -0.0382 +jO. O

0.0286+j0.~

./’ =10 G~, C,= 2.32, L = 4.76 mm, h = 6.35 mm (see Fig. 1), and w = 4.572 mm.

ing wave (/3 = ~1) from z = – co toward z = O (see Fig. 1)

is taken. Furthermore, assuming the mode properties of

the microstrips on both sides of the discontinuity are

known, inside the z <0 half-space the transversal electric

and magnetic field components can be expressed as a

superposition of the incident and the sum of all the

reflected waves:

E,(x, y,z) =el(x, y)e-~~’z+ ‘~mxlnen(x, y)e+~pnz (10)
~=1

Ht(x, y,z) =hl(x, y)e-Jp’z– ~Anhn(x, y)e+’p”’
~=1

(z< o) (11)

where A. (n =1,2, . . . ) are unknown coefficients to be

determined. The corresponding transversal field compo-

nents inside the z >0 semi-infinite space can be written as

follows:

(12)
~=1

(Z>o)

IIt’(x, y, z) = ‘~mllmh~(x, y)e-~piz (13)
~=1

where the prime symbol is used to distinguish the two

different microstrip line modal field distributions and

propagation constants. Again l?~ (m= 1,2,0 “ o) are un-

known coefficients to be determined.

Applying the boundary conditions on the z = O plane

for the continuity of the transversal field components,

+03 +Co

el(x, y)+ ~ Anen(x, y) = ~ llme~(x, y) (14)
~=1 ~=1
+Cc +Cc (Z=o)

lq(x,y)– ~ Anhn(x, y) = ~ Bmh;(x,y) (15)

are obtained. Then, in order to determine the unknown A.

and B. expansion coefficients, (12) and (13) should be

transformed by some means into an infinite system of

equations and the dependence on the x and y coordinates

should be removed. To this end, it is possible to pursue

several strategies in computing the A. and B. coefficients.

A quite similar problem of choosing the best mode-match-

ing approach when the magnetic wall microstrip model is

employed has been addressed recently by Chu, Itoh, and

Shih [14]. Furthermore, the trial of several approaches

showed that there is also an optimal strategy in terms ‘of
convergence behavior in the present hybrid mode analysis.

To this end it is found that the optimal way of solving (14)

and (15) is to take the vector products of them with

e~( x, y) and h L(x, y), respectively. Following the ortho -

gonality properties of the en, h~ and e:, h ~ eigenwaves
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given in (9), it is found that

~=1

(16)

(17)
~=1

where

Cnn=JJ(e; (x,y)Xh:(x, y))dxdy (18)
A

are coupling integrals and C., C.’ have already been de-

fined in (9).

Eliminating the B~ coefficient in (16) and (17), a new set

of infinite system of equations is obtained:

n=l,2,3, . . . (19)

This system constitutes the basis of the analytical ap-

proach of this paper. In order to determine the unknown

expansion coefficients Al, A ~,. . . . the infinite summations

appearing in (19) should be truncated into finite order by

taking N terms (modes). Then, convergence of the com-

puted results is examined to verify the accuracy. This

subject will be treated in the next section.

The coupling integrals CM. are computed by substituting

the field expressions given in (7) and (8) into (18) and then

performing the integrations for the x and y variables. The

result of this analysis is given in the Appendix. After

determining the A. reflected wave coefficients, the trans-

mitted wave expansion coefficients B. are computed easily

by using (17), where of course, the same Nth-order trunca-

tion of the infinite sums is used. In practice the interested

quantities are the dominant mode reflection Sll and trans-

mission Szl coefficients. Then Sll = Al and according to

the definition of S parameters

(20)

III. NUMERICAL RESULTS

Numerical computations have been performed by apply-

ing the theory developed in Section II. For each pair of

microstrip lines the spectrum of propagation and evanes-

cent waves is determined up to sufficient order by taking

2 M equations in the system (l), (2). A perfect agreement

with the ~ values given in [13] is observed. Then, (19) is

solved numerically by keeping N terms in the infinite

summation. Both M and N truncations affect the accu-

racy of the obtained results for the S’ll and Szl parameters.

In each case, extensive convergence tests have been per-

formed to verify the accuracy of the obtained results. In

Figs. 2 and 3 sample convergence patterns are presented.

In general, the phase quantities ~ and & are much

more sensitive than the corresponding amplitudes ISIII and

[S,,[. The truncation order M of the system of (l), (2)

seems to have the primary role in the convergence. The

numerical results presented in this paper have been com-

puted by using M = 8 and N = 8 truncations.

The ‘<relative convergence” aspect [20] by taking a non-

equal number of modes in (19) in the two microstrip lines

has been investigated. It has been shown that some im-

provement in the convergence speed can be achieved by

taking the ratio of mode numbers equal to the ratio of

rnicrostrip widths. However, because of the smooth con-

vergence of the results presented in this paper no use is

made of this property.

Several independent checks have been performed nu-

merically, such as the validity of the power conservation,

reciprocity ( S21= S12), and the boundary conditions on the

y = d plahe (see Fig. 1) by the mode field distributions.
Furthermore, the orthogonality conditions given in (9)

have been verified by direct numerical computation.

Step discontinuities on low c,= 2.32 (polyethylene) and

high CF= 10 (alumina) dielectric constant substrates have

been considered. In all the computed results the shielding

box dimensions are taken to be

2L = 0.53 mm h = 6.35 mm.
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The scattering parameters Sll and Szl are presented in

terms of their amplitudes and phases versus the normal-

ized substrate thickness d/A ~, where A o is the free-space

wavelength (A o = 2 w/k o).

In Figs. 4 and 5 results are given for the c,= 2.32

substrate, several microstrip width wl / W2 ratios, where WI

and W2 are defined in Fig. 1, and two wl/d ratios. The

results obtained are compared with those given by Koster

and Jansen [6], which are also drawn on the same figures

for wl/d = 3 and wl/w2 = 2 and 3. Good agreement is

observed for the ISII 1,I&l I amplitude quantities, while the

comparison of ~ and ~ phase quantities is also

reasonably good.

Discontinuities in microstrip lines with c,= 10 alumina

substrate have been computed and are presented in Figs. 6

and 7. A similar behavior is observed with the c,= 2.32

substrate case.

IV. CONCLUSIONS

A frequency-dependent analysis has been presented for

the microstrip discontinuity problem. The proposed

method is shown to be efficient in terms of the required

numerical labor and is easy to program. The evanescent

mode spectrum of microstrip lines has been investigated

and the existence of modes with complex propagation

constants has been verified. Numerical results have been

presented for several discontinuity structures and a com-

parison with previously published data has been per-

formed. In principle the same method could be used to

treat other types of discontinuity problems in microstrip

lines and the junctions between different types of wave-

guides and microstrip lines.

APPENDIX

A. Computation of P~~, D.~ and K. Terms

Following a standard trigonometric analysis, the Pw,~

terms defined in [13, eq. (68)] after algebraic manipula-

tions, are found to be

q=2u

Pmq =

1

1
x c&%l-2k+1-

()

2k–1
22k-2 k_ ~ 3

I q=20–1

1yl?m,[f(;k)aya;-zk~(y),
/=0 k=O

q=()

where al and a2 are defined in [13, eq. (61)] and the xl.~

and Bn ~ are given by the recursive relations

‘i’Anq(:) = (27I-1) ~2u~l), ,Jj(n-l)(n+ l-1),
~=o

U+o
n—l

~ A., =2n-l
q=o

‘fi(n-l)(rz+l-1), U+o‘i’%(:) = (20)! /=1
~=”
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Following an analogous procedure, the DH~ and K,,

terms, defined in [13, eqs. (73) and (72) respectively], are

given as follows:

I)nm = ; “~’Pmqn~lAn,~ (jja!j!p(xkq- Y,,)
~=1 [=0 k=O

—
%l%:;:llnq[qr ( z~:~

)

1 2k2k–1 q–2k+l _
.(X2 al

()
.22k k

where

\

whenk–q +l=evenandq–l Sk

o elsewhere

\

whenk–q +l=evenandq+l Sk

o elsewhere

and

B. Computation of the CmTerms (n= 1,2, -)

The coefficients C. defined in (9) are given as follows:

where

and 11, 12, 13, 14 are the following integrals:

11 =~dsinh(~il’Y)( sinh(~il)Y))*~Y

12 =Jdcosh(~il)Y)( cosh(~f’J’))*~Y

~3=J’sinh(~f)(h -Y)) ”(sinh(~i2’(h-Y))) *~Y
d

J
14= ‘cosh(a~2)(h –y)). (cosh(a~2)(h -y)))*dy.

d

C. Computation of the C~~ Terms (m(n)= 1,2,3, . ..)

The coefficients Cm. defined in (1.8) are given as follows:

[1]

~:t’)
[2]

~:h)

B:’)= sinh(a$2)(h– d)) ‘lA)= si&(a~)(}~ ‘d)) ‘3]
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